1. Career Guides
  2. How to Become a Machine Learning Engineer
  3. How Do I Learn AI?

how to become a machine learning engineer (2022 guide)

How Do I Learn AI?

BrainStation’s Machine Learning Engineer career guide is intended to help you take the first steps toward a lucrative career in machine learning. Read on for tips, strategies, and the best approaches to learn AI.

Become a Machine Learning Engineer

Speak to a Learning Advisor to learn more about how our bootcamps and courses can help you become a Machine Learning Engineer.

By clicking “Submit”, you accept our Terms.

Couldn’t submit! Refresh the page and try again?

Thank you!

We will be in touch soon.

To learn AI, you should first get a handle on advanced mathematics, probability and statistics, as well as calculus. Mathematics is the foundation of artificial intelligence and a critical first step in learning how AI and algorithms work.

Next, learn Python. Python is one of the most popular programming languages for accessing databases and manipulating data. This is also critical for a subset of artificial intelligence: machine learning. Python can be learned in school, but it is increasingly popular to learn this language through training programs, certificate courses, and bootcamps. You’ll also want to consider languages like C++, R, and Java. Of course, learning some elements of web development will be largely helpful to you as well.

When entering the world of AI, you’ll need to be comfortable working with very detailed calculations and logic, while also using abstract reasoning. When training a machine, they are making implicit relationships that can be considered a black box in terms of how the machine came to the conclusion it did. If you understand more abstract reasoning in addition to hard logic, you’ll get ahead in learning to use AI.

Machine learning is a popular subset of artificial intelligence and helpful to learn if you want to start creating automated tasks that improve over time. For machine learning you’ll need to learn how to collect data, how different algorithms process data, how to diagnose results, and how to demonstrate business value to the organizations. These elements come with time, taking courses, and work experience.